
MCDA Toolkit
Developer Guide



Version: 0.1

Last modified: 10. October 2013



Outline
MCDA (Multi Criteria Decision Analysis) is a methodology to support decision making with the 
benefit of, simply put, being capable to compare apples and oranges. Starting from a goal with 
several alternatives users can interactively weight the importance of influencing criteria. This 
process is often used when decision makers try to find a stable agreement that can be accepted by
all members of the group.

This guide covers the internal structure of the MCDA Toolkit originally developed by KIT
[KIT].



Table of Contents

1. General structure..........................................................................................................................7
1.1 Requirements........................................................................................................................7

1.2 Sources..................................................................................................................................7

2. The CORE of the MCDA ToolKIT..............................................................................................9
2.1 General Architecture of the CORE.......................................................................................9

Reoccurring data structures and resulting interfaces............................................................10

Managing Criteria.................................................................................................................11
Managing Alternatives.........................................................................................................11

2.2 Criteria Normalisation.........................................................................................................11
Normalisation parameters.....................................................................................................12

2.3 Aggregation (Pending)........................................................................................................12
2.4 Weighting (Pending)...........................................................................................................12

Manual Weighting (Pending)...............................................................................................12
AHP Weighting (Pending)....................................................................................................12

2.5 Criteria Groups (Pending)...................................................................................................12
2.6 Import and Export (Pending)..............................................................................................12

3. The GUI of the MCDA ToolKIT...............................................................................................13
3.1 Adding Frames....................................................................................................................13

Initialisation..........................................................................................................................13
Adding Discard and Accept (Pending).................................................................................13

Adding Options (Pending)....................................................................................................13
Adding Help.........................................................................................................................13

Logging and Debugging.......................................................................................................13

Appendix A: How-To....................................................................................................................15

Appendix B: File Format...............................................................................................................17

Appendix C: Managing Sources....................................................................................................19

Appendix D: Third-party Libraries and Licenses..........................................................................21

Bibliography..................................................................................................................................23



Chapter 1 - General structure

1. General structure

The MCDA Toolkit is separated in two parts: the computing engine (the CORE) and the user 
interface (the GUI). The intention behind this is to provide an engine that can be operated in 
batch mode and to provide some degree of freedom to custom frontends.

The CORE contains all necessary data structures, computation methods, and IO functionality to 
process MCDA problems. The CORE is presented in Chapter 2 “The CORE of the MCDA 
Toolkit“.

The GUI provides means to interactively change values and weights while at the same time 
providing means to visualize and analyse the results. The GUI is presented in Chapter 3 “The 
GUI of the MCDA Toolkit“.

1.1 Requirements

The MCDA tool is completely written in Java. To contribute to the development you need a Java 
Development Kit (JDK). You may use any computer and operating system that support Java 7 or
up. The application itself neither requires high computation power nor a large amount of memory
during runtime.

Several compatible implementations of the JDK are available on the internet. The most common 
JDK is provided by Oracle and can be downloaded from the according website [JDK]. The 
installation of the JDK is straightforward. Simply follow the instructions.

Both CORE and GUI are developed using Netbeans IDE (Integrated Development Environment)
[Netbeans]. Several other IDEs for Java are available, however they are not compatible in 
general. Therefore the usage of Netbeans is mandatory.

The project is under version control using Mercurial as backend [Mercurial]. Several frontend 
applications for Mercurial are available. We recommend TortoiseHg [TortoiseHg] however you 
may use a different one especially if you are used to it already. On a site note Netbeans already 
fully supports Mercurial by default.

1.2 Sources

The sources of the CORE and GUI are organised in two different repositories. At this time each 
can be accessed through the internet. Retrieving the sources requires you to copy them to your 
local environment. The process of retrieving for the first time is called cloning. During cloning 
the complete history and all prior versions of the software are copied to the local environment. 
Following the instruction in Appendix C: “Managing Sources“ you end with two new directories
named MCDA-Core and MCDA-GUI. We recommend to group them into single super directory 
with name eg. MCDA.

The CORE contains the following sub directories:

Directory Description

lib libraries required to compile and run the application

nbproject Netbeans project information

src the actual Java sources of the application

7 of 27



MCDA-ToolKIT - Developer Guide

.hg Mercurial information on the repository

The GUI contains the following sub directories:

Directory Description

config configuration files of the application

customization customised look and feel like color definitions, icons, etc.

docs inline help and documenting text files

examples predefined MCDA problems to provide an easy start

lib libraries required to compile and run the application

nbproject Netbeans project information

src the actual Java sources of the application

.hg Mercurial information on the repository

After cloning the two repositories the projects can be opened with Netbeans. As the GUI is 
depending on the CORE some paths have to be adapted in the project configuration. However 
Netbeans will prompt you for the necessary data.

The sources are updated from time to time. To receive modifications you need to request them 
from the server. The process of requesting modifications from the server is called pulling. During
pulling conflicts may occur which then have to be resolved. Resolving conflicts is beyond the 
scope of this document and should be handled by experts. It is desired that conflicts do not 
happen in the first place. Once pulling is complete you most likely would want to upgrade to the 
most recent version as the upgrade is not triggered by default. The process of upgrading or rather
moving between versions in the repository is called updating.

Once you changed the sources and have tested your modification you should fix it by creating a 
new version. The process of fixing a versions is called committing. It causes the local repository 
to create a new version. At some time you may want to distribute the accumulated changes back 
to the original repository. The process of distributing back is called pushing. While cloning and 
pulling are basically allowed without restrictions, pushing requires a user authentication. The 

8 of 27



Chapter 2 - The CORE of the MCDA Toolkit

2. The CORE of the MCDA Toolkit

According to the structure of MCDA and the best practise of Java developing the sources are 
distinguished in groups (the packages) and files (the classes). The topics of the CORE packages 
are basics, normalisation, aggregation, constants, and AHP [AHP]. This reflects in accordingly 
named packages.

The CORE on one hand provides the data structures to contain MCDA problems and on the other
hand process them and provide the solution as a result set. In a simplified approach MCDA 
problems consist of meta data most likely in the form of text and actual values, i.e. a problem 
coordinator, the alternatives, and the criteria forming a matrix that has to be processed.

2.1 General Architecture of the CORE

The MCDA problem is encapsulated in a goal, which contains meta data, a list of alternatives 
and a list of criteria. For every alternative each criteria provides some data which leads to a 
matrix like structure. This matrix is implemented using hash maps based on the unique 
identifiers of criteria and alternatives. For the time being the data is limited to floating point 
values. Moreover the goal contains a tree like hierarchy to organise criteria into groups. Figure 1 
gives a general overview on the architecture. Figure 2 presents a simplified UML diagram of the 
main components.

The goal also provides means to resolve the MCDA problem and to retrieve the solution. 
Accessing the results triggers the computation process on demand: first the criteria are 
normalised according to their normalisation function. Then for each alternative the 
corresponding criteria values are aggregated according to an aggregation function taking into 
account the importance respectively weight of each criterion. Several normalisation and 
aggregation functions are available. The weights can be either set manually or will be generated 
using the AHP.

9 of 27

Figure 1: Overview on the general structure of the CORE.



MCDA-ToolKIT - Developer Guide

Reoccurring data structures and resulting interfaces
Some identical data structures are used in several classes and their instances. To simplify the 
handling corresponding interfaces have been created for each of this data structures.

Interface Description

Identifier Manage an unique identifier for hash maps and correlations in 
XML documents

Label Manage multi-lingual labels of an instance not necessarily 
unique

Description Manage multi-lingual descriptions of an instance

Dye Manage the colour of an instance

Changed Managing a flag that indicates changes in the data values of the 
instance

AdditionalInformation Combining the interfaces Identifier, Label, 
Description, Dye, and Changed

Table 1: Overview on meta data interfaces and their purpose.

The classes Goal, Alternative, Criterion, and CriterionGroup implement these 
interfaces through the aggregating interface AdditionalInformation.

10 of 27

Figure 2: Simplified UML diagram of the main CORE components.



Chapter 2 - The CORE of the MCDA Toolkit

Managing Criteria
Criteria are stored as linked list and hash map in the class Goal. The hash map is based on the 
unique identifiers of the criteria. Each criterion contains two maps linking alternatives via the 
alternative unique identifiers to absolute values and normalised values. At the time of writing the
values are plain floating point values. However the vision is to replace these simple values with 
multi-dimensional functions by the nature of fuzzy, probabilistic, look-up table, etc. whereas 
dimensions can be eg. time, enumeration, etc. The general structure of the CORE is already 
prepared to deal with such data structures. Nevertheless problems like normalising are not 
addressed yet.

A criterion also contains a link to the group it belongs to and furthermore a normalisation entity. 
Normalisation is explained in section 2.2 Criteria Normalisation.

Managing Alternatives
In the current implementation the data structures for alternatives simply cover meta data, which 
is implementation of the AdditionalInformation interface. The actual mapping of values of 
criteria to alternatives is handled by the criteria implementation.

2.2 Criteria Normalisation

Criteria reflect different measurements for alternatives, very often not quantitative but of 
qualitative nature. For comparison respectively aggregation the criteria need to be normalised. 
Many different methods are implemented their structure based on the common interface 
AbstractNormalization. Figure 3 provides an overview on the implemented normalisation 
methods and their relation.

Through the common interface all normalisation methods provide means to either normalise all 
values of a criterion or to normalise an external value in respect to the values of a criterion. Each 
criterion contains its own normaliser. Normalisation is triggered automatically during the 
resolving process if changes have been registered.

11 of 27

Figure 3: Class hierarchy of the normalisation methods.



MCDA-ToolKIT - Developer Guide

Normalisation parameters
Normalisation methods can have several parameters, which frequently are shared. Therefore 
parameters are defined as interface definitions which the normalisation methods implement 
according to their needs. Table gives an overview on the defined parameters.

Interface Description

DomainBounds Lower and upper bounds of the normalisation domain range

Invertible

Gain

Speed

Turn

Curvature

2.3 Aggregation (Pending)

2.4 Weighting (Pending)

Manual Weighting (Pending)

AHP Weighting (Pending)

2.5 Criteria Groups (Pending)

2.6 Import and Export (Pending)

12 of 27



Chapter 3 - The GUI of the MCDA Toolkit

3. The GUI of the MCDA Toolkit

Wrapper Frame,Applet, Wizard, InternalFrames (update), General Appearance Buttons 
Functionality, Load/Save, Recent, Localization (updateLanguage), Customization, 

3.1 Adding Frames

Frames are used to present MCDA data in a specific way eg. to graphically display and change 
the weights of criteria, edit the criteria values, etc. All frames are derived from the super class 
Template. By default frames provide a button bar that contains basic functions like open help, 
close frame, etc. The following sections introduce a step by step instructions on how to 
implement a new frame.

Initialisation
As an example we create a frame that displays the names of all alternatives. The class of the 
frame will be named ShowAlternatives. In Appendix D: Code of example frame 
ShowAlternatives the important parts of the code are presented.

Create the file  ShowAlternatives.java and extend it from the class Template. 

Adding Discard and Accept (Pending)

Adding Options (Pending)

Adding Help
All help texts are expected to be HTML encoded and to be located under the directory 
MCDA-GUI/docs/help. Files directly located in this directory are used as backup if language 
specific files are not available. Language specific texts are located in subdirectories with name of
the two character ISO code according to the language, eg. help in German language is located 
under  MCDA-GUI/docs/help/de. The files of a specific topic for different languages all have 
the same file name but are located in different directories.

By default the help button triggers the display of a localised help text. If not customised, the 
suffix .html is appended to the class name of the frame to search for the according file. To 
provide a help text for the upper example create the HTML file  
MCDA-GUI/docs/help/ShowAlternatives.html and fill it with appropriate content. To 
provide a German translation create the HTML file  
MCDA-GUI/docs/help/de/ShowAlternatives.html and fill it with German content, 
respectively. In general the files for backup and English language are the same.

If for any reason you want a different file name instead of the class based name override the 
method getHelpText() from the Template class to provide the desired name.

Logging and Debugging
The Template class provides a logging entity named log to simplify logging for debugging 
purposes. To output debugging information use log.debug(“your text”). To address 
different tiers of severity use log.debug, log.info, log.warn, log.error, and 

13 of 27



MCDA-ToolKIT - Developer Guide

log.fatal. Appendix A: How-To, Logging and Debugging explains how the logging process 
is controlled in general.

14 of 27



Appendix A: How-To

Appendix A: How-To

Logging and Debugging

For logging purposes the Apache log4j libraries are used [LOG4J]. The logging process is 
configured through the file MCDA-GUI/config/log4j.xml. Several output destinations are 
predefined and can be activated. Also the different log levels can be set here.

15 of 27



Appendix B: File Format

Appendix B: File Format
MCDA project data

MCDA result

MCDA special import and export

17 of 27



Appendix C: Managing Sources

Appendix C: Managing Sources
The sources are available as Mercurial repository through the internet. In the following it is 
shown how to manage the sources using TortoiseHg for Linux.

Cloning

1. Create a location to clone the sources into. We recommend the path projects/MCDA.

2. Start TortoiseHg. The image below shows an already non-empty repository registry.

3. Clone the sources of the CORE. In the menu File select the item Clone Repository.

4. As source enter the following URL: 
http://portal.iket.kit.edu/projects/MCDA/MCDA-Core

5. As destination enter your local location similar to:
/home/tim/projects/MCDA/MCDA-Core

6. The image below shows the screen after entering the values. Click Clone.

7. Clone the sources of the GUI the same way. As source enter the following URL:
http://portal.iket.kit.edu/projects/MCDA/MCDA-GUI

19 of 27



MCDA-ToolKIT - Developer Guide

Pulling

1. The cloned repository MCDA-Core is displayed amongst the known repositories on the left 
side. Double click on the entry to open the repository. The image below shows the state after 
opening an repository.

2. Either use the menu entry Repository → Synchronize → Pull or the highlighted button in the 
upper image to trigger the pull.

Updating

1. After pulling select the version in the tree view you want to move to (most likely the tip of the 
tree). Right click on it to open the popup menu, then click on Update to trigger the upgrade.

Commiting

1. Click on the top item of the tree view named working directory.

2. In the file view select all files you that want to commit (most likely all).

3. In the comment box add a comment describing the modification.

4. Click on Commit.

Pushing

1. Similar to the pulling process open the repository you want to distribute back to the original 
repository.

2. Either use the menu entry Repository → Synchronize → Push or the push button to trigger the 
distribution.

3. Pushing to the web server takes a lot of time. You will be prompted for a user name (mcda) 
and password (mcda).

20 of 27



Appendix D: Code of example frame ShowAlternatives

Appendix D: Code of example frame ShowAlternatives
1 package edu.kit.mcda.frames;
2
3 import edu.kit.mcda.Alternative;
4 import edu.kit.mcda.Goal;
5 import edu.kit.mcda.Main;
6 import edu.kit.mcda.constants.gui.Customization;
7 import java.awt.EventQueue;
8 import java.awt.event.ActionEvent;
9 import java.awt.event.ActionListener;

10 import java.util.ArrayList;
11 import javax.swing.BorderFactory;
12 import javax.swing.BoxLayout;
13 import javax.swing.JCheckBox;
14 import javax.swing.JPanel;
15 import javax.swing.JTextPane;
16 import org.fzk.swing.CursorController;
17
18 public class ShowAlternatives
19   extends Template {
20
21 //////////////////////////////////////////////////////////////////////////////
22 // constants definitions
23 //////////////////////////////////////////////////////////////////////////////
24   /** Key for the display title option in the preferences. */
25   private transient static final String PREFERENCES_KEY_DISPLAY_TITLE = 

"displayTitle";
26   /** Default value for the display title option in the preferences. */
27   private transient static final boolean PREFERENCES_VALUE_DISPLAY_TITLE = 

true;
28
29 //////////////////////////////////////////////////////////////////////////////
30 // field definitions
31 //////////////////////////////////////////////////////////////////////////////
32   /** The text panel to display the report in. */
33   private JTextPane tpText;
34   /** Check box for generating title. */
35   private JCheckBox cbTitle;
36   /** Buffer to undo changes of {@link #cbTitle}. */
37   private boolean bufferTitle;
38
39 //////////////////////////////////////////////////////////////////////////////
40 // constructor, main and initialization
41 //////////////////////////////////////////////////////////////////////////////
42   public ShowAlternatives(Goal _goal, Main _main) {
43     super(_goal, _main);
44     preInit();
45     init();
46     postInit();
47   }
48
49   /**
50    * Initializations before main initialization (of components).
51    */
52   private void preInit() {
53   }
54
55   /**
56    * Main initializations (of components).
57    */
58   private void init() {
59     initDefaults();
60     initComponent();
61   }

21 of 27



MCDA-ToolKIT - Developer Guide

62
63   /**
64    * Initializations after main initialization (of components).
65    */
66   private void postInit() {
67   }
68
69   /**
70    * Initializations of the default values
71    */
72   private void initDefaults() {
73   }
74
75   /**
76    * Initializations of the components
77    */
78   private void initComponent() {
79     setFrameIcon(Customization.REPORT_X16);
80     setFrameTitle(getTranslator().getTranslation("general_analysis"));
81     //
82     initOptions();
83     initReport();
84   }
85
86   private void initOptions() {
87     final JPanel optionsContainer;
88     //
89     optionsContainer = new JPanel();
90     optionsContainer.setBorder(BorderFactory.createEmptyBorder(10, 10, 5, 10));
91     optionsContainer.setLayout(new BoxLayout(optionsContainer, 

BoxLayout.Y_AXIS));
92     optionsContainer.setOpaque(false);
93     //
94     cbTitle = new 

JCheckBox(getTranslator().getTranslation("option_report_title"));
95     cbTitle.setSelected(loadPreference(PREFERENCES_KEY_DISPLAY_TITLE, 

PREFERENCES_VALUE_DISPLAY_TITLE));
96     cbTitle.addActionListener(new ActionListener() {
97       @Override public void actionPerformed(ActionEvent e) {
98         Runnable runnable = new Runnable() {
99           public void run() {

100             updateContent();
101           }
102         };
103         

EventQueue.invokeLater(CursorController.wrapRunnable(getInstance().getRootPane(
), runnable));

104       }
105     });
106     optionsContainer.add(cbTitle);
107     //
108     setOptions(optionsContainer);
109   }
110
111   /**
112    * Initialization of the report
113    */
114   private void initReport() {
115     tpText = new JTextPane();
116     tpText.setContentType("text/html");
117     updateContent();
118     //
119     setContent(tpText);
120   }
121

22 of 27



Appendix D: Code of example frame ShowAlternatives

122   /**
123    * Initialization of the report text
124    */
125   private void updateContent() {
126     StringBuilder builder;
127     //
128     builder = new StringBuilder();
129     if (cbTitle.isSelected()) {
130       builder.append("<h1>Alternatives</h1>");
131     }
132     for (Alternative tmpAlternative : getAlternatives()) {
133       builder.append(tmpAlternative.getLabel(getTranslator().getLanguage()));
134       builder.append("<br>");
135     }
136     tpText.setText(builder.toString());
137   }
138
139 //////////////////////////////////////////////////////////////////////////////
140 // update methods
141 //////////////////////////////////////////////////////////////////////////////
142   /**
143    * Updates the language
144    */
145   @Override public void updateLanguage() {
146     setFrameTitle(getTranslator().getTranslation("general_analysis"));
147     updateContent();
148   }
149
150   @Override public void updateFrame(ArrayList<Changed> _flags) {
151     if (_flags.contains(Changed.STRUCTURE)) {
152       updateContent();
153     }
154   }
155
156 //////////////////////////////////////////////////////////////////////////////
157 // miscelaneous methods
158 //////////////////////////////////////////////////////////////////////////////
159   @Override public void discardOptionsChanges() {
160     cbTitle.setSelected(bufferTitle);
161     updateContent();
162   }
163   @Override public void commitOptionsChanges() {
164     bufferTitle = cbTitle.isSelected();
165     storePreference(PREFERENCES_KEY_DISPLAY_TITLE, cbTitle.isSelected());
166   }
167
168 }

23 of 27



Appendix E: Third-party Libraries and Licenses

Appendix E: Third-party Libraries and Licenses
• Oracle Java JDK:

Oracle Binary Code License

• Alternative OpenJDK
GNU GPL 2

• Java Help
GNU GPL 2

• Apache Http Components
Apache License

• JAXEN XML parsing
Apache style License

• JDOM XML document model
Apache style License

• JFreeChart charting
GNU LGPL

• Log4j logging
Apache License

• JScience
free, copyright usage

• JCalendar date chooser
GNU LGPL

• Netbeans Outline TreeTable
GNU GPL 2 oder CDDL

25 of 27



Bibliography
[KIT] KIT, Karlsruhe Institute of Technology, http://www.kit.edu/english/

[JDK] Oracle, Java Development Kit (JDK), 
http://www.oracle.com/technetwork/java/javase/downloads/index.html

[Netbeans] Netbeans, Netbeans Integrated Development Environment, https://netbeans.org/

[Mercurial] Mercurial Community, Mercurial: Distributed Version Control System, 
http://mercurial.selenic.com/

[TortoiseHg] Steve Borho and Yuki Kodama, TortoiseHg: a frontend for Mercurial, 
http://tortoisehg.bitbucket.org/

[AHP] Wikipedia, Analytic hierarchy process, 
http://en.wikipedia.org/wiki/Analytic_hierarchy_process

[LOG4J] Apache Foundation, Log4j, http://logging.apache.org/log4j/1.2/


	1. General structure
	1.1 Requirements
	1.2 Sources

	2. The CORE of the MCDA Toolkit
	2.1 General Architecture of the CORE
	2.2 Criteria Normalisation
	2.3 Aggregation (Pending)
	2.4 Weighting (Pending)
	2.5 Criteria Groups (Pending)
	2.6 Import and Export (Pending)

	3. The GUI of the MCDA Toolkit
	3.1 Adding Frames
	Appendix A: How-To
	Logging and Debugging

	Appendix B: File Format
	Appendix C: Managing Sources
	Cloning
	Pulling
	Updating
	Commiting
	Pushing

	Appendix D: Code of example frame ShowAlternatives
	Appendix E: Third-party Libraries and Licenses



